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A Ciritical Study of the Coaxial Transmission
Line Utilizing Conductors of Both Circular
and Square Cross Section

WEIGAN LIN

Abstract —By means of various conformal transformations we calculate
the characteristic impedance of the coaxial line consisting of both square
and circular cylinders. We also employ a complex potential function to
match the boundary condition on one conductor completely and on either
12 points or 8 points on the other conductor to obtain exceptionally
accurate results. Our present results are believed to be considerably better
than our previous results quoted by Gunston [2].

I. INTRODUCTION

IBLET [1] HAS made an ingenious use of Bowman’s

work to determine the characteristic impedance of the
coaxial transmission line utilizing conductors of both cir-
cular and square cross section, as shown in Fig. 1. The
rectangular region in the w-plane, bounded by 04BC is
mapped conformally into the trapezoidal region in the
z-plane of Fig. 1, bounded by 04 BC. Riblet has stated that
an equipotential line GH in the w-plane transforms into an
equipotential in the z-plane, which is circular within +0.2
percent for impedance values in the vicinity of 25 £ and
which is circular within two parts in 107 for those in the
vicinity of 100 . It is the purpose of this paper to make a
fuller use of the transformation of Fig. 1, to improve the
accuracy of the calculation of the impedances of lines,
baving inner circular and outer square conductors, improv-
ing also some of our previous results [2]-[4]. We also give
exact bounds of the mid equipotential in z-plane, to show
that it is far from being circular.

II. THEORY

We can find the exact characteristic impedance Z, of the
coaxial line consisting of two square cylinders with diago-
nals at 45° as shown in the z-plane in Fig. 1 where we have
shown one quarter of the coaxial system under study. Then
Z,/2 is the characteristic impedance of both the lines, one
conductor of which is the closed cylinder with HGF as one
quarter of it and the other conductor is either an outer
square or an inner square cylinder. If HGF is indeed a
circular arc, then we have achieved our goal. We find that
is not so.

Instead of utilizing the original transformation of Bow-
man [1], we take the symmetric region ABCDEA, in the
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z-plane and by the following transformations we map it
into the corresponding region ABCDE of the w-plane:

¢ dt .
z=A - + gel™/4
fO (22-1)"42~1/k%)"?

(1a)
(1b)

where sn(w, k) is the Jacobian Elliptic function of modulus
k, so that

t=sn(w, k)

_[E K(R) |
o fSK(k)' @)

While k is related to the sizes of the squares in the z-plane
of Fig. 1 by the fact that t=1,z=V2a,and t =1/k, z=b,
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TABLE 1
IMPEDANCE Z: (SEE FIG. 1(a))
Lo 20 30 | 40 50 60 | 80 | 100 | 120
Ohms)
a/b .638732| .547498| ,46400] ,388874| .323103( .23232] .16823} .121257
Zg 140 160 180 200 220 240
(Onhms)
a/b B.77273e-2| .063368| 4.57023e~2|3.26864e-22.38845¢-2|1.70101e-2]

and, therefore, the constant

A=ja//0l dt

1,2
(1—#)1/“(#—:2)

is pure imaginary and k is to be obtained by the following

()

relation:
fl/k dt
12
A
Fi iy & @
1/2
0 (1~z2)1/4(£5—t2)

once the ratio b/a is prescribed.

Equation (4) fixes the relationship between b/a and £,
then by (2), that between Z; and the ratio b/a. By (4) and
(3) we calculate the impedance Z, versus b/a (see Table I).

Now we study the mid-equipotinal line HGF in the
z-plane corresponding to the mid-equipotential line HGF
in the uniform field of the w-plane in Fig. 1. For the line
HGF we have

!

w=u+j—2—

putting this value of w into (1b), we find

1 (I+k)sn(u, k)+ jen(u, k)dn(u, k)
vk 1+ ksn?(u, k)

(5) is to be inserted in the upper limit of the integral
defining z, to determine the locus HGF in the z-plane. To
examine if HGF is nearly circular, all we have to do is to

find the maximum and minimum values of |z| along the
curve HGF. So we solve for z in the following equation:

. dx dy
Le., x—- +ydu =0

(5)

1=

d, 2
dulzl 0,
that is,
dz
#2200
Re(z du) 0

where Re denotes “the real part of” and z* =x — jy; we
can finally have

dz dt
* | =
Re(z dt du) 0 (6)

to obtain |z| . and |z|,, along GHF in the z-plane.
Now, from (la) we have

fg— =4 = 1)1/4(:2 YR (7a)
while from (5) we find that
di _ (1+ k)[1— ksn?(u, k)]
du Vi
en(u, k)dn(u, k)+ j(1+ k) sn(u, k)
' [1+ ksn(u, k)] '

It can readily be seen from (5) that at u=0, = j/Vk.
Therefore, from (7a)

(7b)

(%)
and also from Fig. 1 it is seen that along 0C
z*=|zle " (8b)
and finally at u=0
d 1+k
= v (8¢)

Putting (8a—c) into (6), (6) holds, because the product of
(8a—c) is pure imaginary. Similarly, at u =K, r =1/Vk, z*
is real at the point H of the ¢-plane of Fig. 1 and from (7a),
dz /dt is real, but from (7b), dr /du is purely imaginary so
(6) again holds. Thus, we conclude that |z,| and |z,;| are
extreme values, which are given by (1a) to be

lelz mm:Afj/‘/l; 1/4 dt l/7+aef'”/4
o (P-DVHP-1k7)
d
—a+)4) [ 2. (9a)
Y 5 /4 1\
(+1)"7"y +7c—2
and
dr
72 = el =2 a 41| [ —
1/4
(=" (350
(9b)

where 4 is given by (3).
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TABLE II
22--21
a/b Zo,ohms z1/b z,/b 19 = 52+z1 % 100
3.23075e~-2 199.01.9 7.30082e-2 | .202962 23.54
3.,9568e~2 186.887 8.88595¢-2 | .224616 21,65
4.84624¢-2 175.238 108006 .248586 19.71
5.3556e-2 163.485 131057 .275122 17,73
7.26988e-2 151.554 158691 30451 15.:74
8.90464e-2 139.505 191645 .33706 13.75
.10117 131.889 .215444 359339 12.52
.109082 127.39 «230683 37317 11.80
2122677 120,363 +256325 395831 10.70
.133662 115.228 +27655 .41326 9.91
148249 109022 302723 435361 8.99
.163879 103,014 329914 457909 8.12
.18331 96.2913 .362518 484567 7.20
.201203 90,7063 «391342 507933 6.48
.225389 83.8912 428566 528051 5.65
247822 78.1898 «461405 564693 5.03
.274415 72.0572 .49825 .594926 4,40
307679 65.1594 +541371 631023 3.82
.333788 60.2354 +573064 658246 3.46
390835 50.6432 636385 .715037 2.91
411289 47,5185 657313 34677 2.78
.432222 44.4614 677867 . 754458 2.67
25~2¢
a/b Zo,ohms z1/b 22/b 71: %100
22+z1
454719 41.3152 699057 .T75406 2.59
479771 37,9594 721654 +79841 2,52
.509363 34,1628 LT47047 825225 2.48
549007 29,2943 779573 +860693 2.47
571943 26,5541 «T97597 .881042 2.49
587327 24,7517 809443 .894641, 2.50
+609133 22,1471 825968 .913868 2.53
.626523 20.0591 .838976 .929173 2.55
637133 18.7586 846862 938496 2.57
.65510 16.4685 .860193 .954282 2,59

Once the ratio a /b is prescribed, Z, is fixed, then Z, /2
is the upper bound to the characteristic impedance of the
line formed by an inner circular conductor of radius z, and
the outer conductor of the square of side b, and this Zy/2
is also the upper bound to the characteristic impedance of
the line formed by an inner conductor of the square of side
a and an outer circular conductor of radius z,. Making use
of this upper bound and the lower bound obtained previ-
ously, to be described below, we can improve the accuracy
of the calculated characteristic impedance of the coaxial
line utilizing conductors of both circular and square cross
section.

We may employ two such equipotentials GH and G'H’
shown in Fig. 2 to be the upper and the lower bounds to
the characteristic impedances of the lines utilizing a cir-
cular cylinder of radius R and a square cylinder of sides a
or b, but these lower and upper bounds are found to be too
far apart to give accurate results.

In Table II, we tabulate the values of Z,, z,, and z,
against a/b and the values of the percent deviation of

<h

Fig. 2.
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Az = (z;— z)/2 from the mean value of z, and z,

Zy

n="2—2Lx100

z,t 2z

when k in Fig. (1b) is increasing from k& = 0.005 to k=
0.999. So we can see that the mid-equipotental GH is far
from being circular when Z, /2 increases from 8.234 @ to
99.51 Q.

A. Improved Results

Let us call Z;, and Z,, the characteristic impedance,
respectively, of the line with outer square and inner cir-
cular cylinders and that with outer circular and inner
square cylinders.

B. The Impedance Z,,

We now take the following transformation [2]-[4] to
map the interior of a rectangular of w-plane into that of a
unit circle of the z-plane and to map a circle of radius R of
the w-plane into a closed curve of the z-plane lying be-

tween the circles z = |z}, and z =|z| ., Fig. 3
Kw kw Kw
—Sn(Eb—,kl)dn('z—b‘,kl) _ l—cn( b ’kl)
Kw Kw )
n(-ﬂ)—’k‘) l+cn( b ,kl)
(10)
In our case, b=b, and k, = 1/\/5, so we have
Upper bound: (Zy,) 0 = 59.952 In|z]| ., 2
Lower bound: (Zy; ), = 59.952 Injz| ;@ (11)
where
1+an{ 5RI;K(0.707107), 1/‘/5}
12| = (11a)

R 1
—en2! — —
[~cn {2! K(0.707107), — }
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and

I+ n{g
‘N

K(0.707107),1/v2 }

(11b)

|Z|min_

l—cn{ %K(0.707107), 1/\/5}

where K is the complete elliptic integral of the first kind.
We tabulate the values Z; from (11), and also the
arithmetic and geometric mean values

(Z()l)a . (ZOI)max;(ZOI)mm (12)
(Zo1)g.m.= <(ZOI)max(ZOI)min>l/2 (13)

in Table III. Also, we tabulate the following match point
impedance:

1
(Zo1) maten = 5 \/_%‘Ao_1 =59.9524;"

where A4 is the first coefficient in the truncated series of
circular harmonics for the complex potential in the z-plane
[3]. For our case of square electrodes, so that an addition
of 90° to ¢ of Fig. 2 does not alter the complex potential,
which is then of the form

(14)

®=Ayln,+ 4 (z —i)+A8(z ——15) (15a)
z z

so that

®=U+ jV=A,nr+ A4(r“ - —lz)cos4q5
r

+A8(r8——1§)c038qy
r

1
+j{A0q>+A4(r +— )s1n4(p

1Y .
+A8(r8+ﬁ)sm8q>. (15b)
Therefore, U =0 at the outer square electrode and fits the
boundary condition at 12 points on the inner electrode if

we take

U-lat(p Or_rl IZ|m1n’(P 77'/87"‘-_7’7,
andq)—z, =73 = 2| pax
where
| —cn[ 1854075 1.854075 z _1__
b/R 8 ’ V2
1. 854075 . z 1/‘5
) b/R 8
ry= (16)
1+en 1854075 z _1_
b/R 8 ’ V2
0 1.54075 n 7 1
b/R 8 ’ \/'2'

and we can set up the system of linear equations to solve
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TABLE III

ZO]

1985

%oyt
R 0.0470973[0,142010]0,239085 P.3399780 0.44515 0.557536 [0.676602 |0.802495{0.93352
b
(Zgg) in [187.728  [121.556 |90.3150 £9.1987 [52.8401 [39.1389 |27.03%09 [15.8778 |5.23845
(z01)ma' 187.747 1121.576 [90.3716 $9.3194 |53.2166 [39.9990 [28.9102 [19.56%0 |11.9807
| ’
(Zgy) V18737 {121,567 190,34330 69,2590  153.0264 [39,5690 |27.9705 |17.7°04 | 8.60960
q.m.l
(Zgy)sg . 1BT.T3T 1121967 1903433 69.2590  [53.0260 39,5666 127.9548 |17.62440| 7.92216
Maximum |
ofo &1 T 0,0050765]0.007264[0.,0313857 0.087253 [0.356299 1.0:224] 3.47625|11.6047 64.3539
(Z01)a.m.!
HMaximum !
0/00;’;”"" 0.0050712{0.00726410.0313802] 0.087214110.35566% 1.09292| 3.41785|10.9998 | 51.2309
(ZO‘I)G.IA .
(Z’O’)mqt'h 187.737 {121.5667[90.343 69.2589 153.0260 | 39.5565] 27.9068|17.4483 7.17168
Maximum .
b/o error |0.0050699]0.0072592| 0.0%313466| 0.086901 0.351817| 1.067045 3.24793 9.89073 36.9046
Z01 match
for A4,
1 1 T,
Aglnry+ | rf = = | 4+ | rf == | 4 =1 \\:
' ”1
1 \
Aylnr,. —(rzg——g Ag=1 W
p)
1 g 1 \
Aglnry — | rf —— |+ | ¥ — = | 4g=1. (17a)
r 3

It follows then
_ RuRy+ RipRy Ry + Ry Ry Ry + Ry Ry Ry

A
0 RyRy + RpRy+ Ry Ry + Ry Ry,
(17b)
where
Riy=Inry Ry=Inr, Ryy=Inr
1 1
Ry=rl—— R,=rl-—
u=n pa TN I
1 1
Ry=ri—— Ry=rf-—
n=h o T2Th o
1 1
Ry=r'—— Ry=rf—-—
n=n o 2= I

For prescribed values of R /b we can calculate the Rij by
calculating r; =|z|,.., 75 =12|maxs and r, by (11a-b), and
(16). (Zy1) maren enters Table III, where we have given also

Fig. 4.

the maximum percent error by the following formula:

ZO] B (ZOl)true ZO

100 <100

(ZOI )true

C. The Impedance Z,,

1 (ZOl)m.in

(18)

(ZOI)min

We have shown that the following transformation [4]

maps the exterior of the rectangle in
of a unit circle in the z-plane (Fig. 4):

the w-plane into that

W= sz , flr—i—((zz +1)° —422005201)1/2+\/a2 +aje
e Nz

(19)

ané, = a, /a = E(sin@,)—cos*8,K(sin#,) (20)

E(cos8,)—sin*0,K(cos8,)
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TABLE IV
ZOZ

02*
a/R .05 .1 .2 3 .32 .34 .36 .38 4
2 min 16,9456 | B8.4723 | 4.234 | 2.81663 | 2.6385 | 2.48097 | 2.34036 | 2.21412] 2.09997
2| max 16.9456 | 8.47243 | 4.23827 | 2.83138 | 2.65642 | 2.50242 | 2.36592 | 2.2442 | 2.73508
Z02)min [159.665 [128.105  |86.5195 B2.0827 FB.166 |54.4738 |50.9776 | 47.6532 |44.4797
Zo2'max 169.665 [128.106  [86.5799 [2.3958 [58.5718 |54.9914 |51.6286 | 48.4621 |45.4736
Zo2) A, 169.665 [L28.106  (86.5497 £2.2593 [58.3689 |54.7326 [51.3031 ! 48.0577 |44.9767
eTIOT,0/0 | 5 4c8ise-2 .25211) .348796 .475029 .638532| .848735| 1.11725  1.45951| 1.89385
(Z02)g.u. 1169.665 '128.106 |36.5501 62.2391 [38.3686 |54.7321 |[51.3021 : 48.0600 |44.9739
”a;‘;,rg{" 3.48e-2| .25211 | .34870 | .4750 | .6385 8487 | 1.116 1.452 | 1.875
o2 maten 169.590 |128.048  |86.5107 [62.2097 44.9%99
NMer.0/0 .
AL | -0.0442 | -0.0442 |-0.0101 | 0.2045 1.0346
a/R | .42 .44 .46 .48 .5 .6 b7
12l 40 ' 1.99611 | 1.90105 | 1.81357| 1.73261] 1.65729 | 1.34024 | 1.04465
12) iy 2,03678 | 1.94788 | 1.86716| 1.79362] 1.72644 | 1.46398 | 1.28592
Zg2) min 41.4385 |38.5134 | 35.6889 [32.9513 | 30.2867 | 17.5569 2.61876
200) max 42,6481 |39.9722 | 37.4348 |35.026 32,7373 | 22.8512 | 15.0764
(25 y.x, | 420433 |39.2428 | 36.5619 .33.9886 | 31.512 20.204 | 8.84759
Moo {
i
ier‘ror,o/o : 2.44555 | 3.74817 4.,0456 15.0775 | 237.853 )
RzM)G . 42.0388 [39.2360 | 36.5514 33.9728 | 31.4882 | 20.0299 ' 6.28343
| e ! N
Tax. o/a E ‘ M
e 2.420 3.108 3.960 14.15 140.6 ;
(Zo2) maten ' ! 31.395 | 19.666 . 4.226
, j :
Max. ofo | ;
o J 3.6594 | 12,01 61.36
and characteristic impedance of the line whose cross section is
a/R @) shown in the w-plane of Fig. 4, by (11)-(14), while in (17a)
c= ; . we set A, =0 to simplify the problem at the expense of
2(E(cos 8,)—sin’8,K (cos 6, )) 8 Py 1he p P

The circle of radius R =1 in the w-plane is mapped into a
closed curve lying between the circles |z| = |z| ., and |z| =
|2| g in the z-plane. For our case of square and circular
electrodes, a, = a, 6, = 7/4 and
_a 1

2R 1.350644 — 1(1.854075)

,=m/4, c (22)

Also |z} .. and |z|,,, are given by the upper limits of the
following integrals:

losing some accuracy. 4, is then given by

+ (el Izl In

(I2)fax =121k ) In
12] max

|Z|min

Ay

4 - 4 -
|z|max 'Izlmzfx +|z|mm_|zlmiﬁ

In Table IV, we show the results of the calculations.

ITI. D1scussION AND CONCLUSION
By comparing the values of (Z,),,.. in Tables Il and I1I,

-4 _ f ‘Z|max§)_"/y4 +1 (23) e find that we may pick the smaller upper bound, and

R y? together with the lower bound we can improve the accu-

2l & racy of the calculated value of Z,. For instance, for

1-v2a/R= f] ;y;Vy“—l. (24)  z,/b=0.802495 and 0.933521 we find (Zy),, to be

So we calculate |z|,,, and |z|,,, from (23) and (24) and
then we calculate the bounds and the approximation to the

1/2(34.7412) =17.3706 @ and 1,/2(19.6012) = 9.8006  in
Table II, smaller than those in Table III at the same R /b
ratio. So we can calculate the new (Z,,)5m values to be
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TABLE V
RECOMMENDED VALUES OF Z,
R/b 04710 .14201 | .23909 #33978 | 44552 | 55754 | .67660 | .80520].93352
Zo1 187.737[121.5667 90.5667 |69.2589 [53.0260 59.5565 {27.9088 16.7758{7.1652
Max
o/o error|.0051 .0073 0314 0869 +3518 | 1.067 3.248 5.66 36.78

16.7758 and 7.1652 with maximum 0/0 error of 5.66 and
36.78. However, we can achieve no improvement in the
calculated values of Z;,. So we would recommend to adopt
the last two lines of Table IV for the values of Z, and the
values of Table V as the values of Z,,, for impedances of
the coaxial line of square and circular cylinders. These are
plotted in curves in Fig. 5 together with data from curves
of Riblet’s paper and from curves of Laura and Luisoni.
For better bounds than we have obtained analytically
here, we have to resort to numerical calculations [6], [7].
Riblet’s work has been supported by the approximate

treatments [5]. M.A.R. Gunston has made a good compari-
son of works by various authors on this and other related
transmission line problems [2]. The results reported in this
paper are considerably better than those of our previous
works quoted by Gunston [2].

REFERENCES

[1] H.J. Riblet, “An accurate determination of the characteristic imped-
ance of the coaxial system consisting of a square concentric with a
circle,” TEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.
714-715, Aug. 1975. ;

[2] W. G. Lin and S. L. Chung “A new method of calculating the



1988

characteristic impedances of transmission lines,” Acta. Phys. Sin.,
vol. 19, 249-258, Apr. 1963 (in Chinese). Part of our results were
quoted in the book Microwave Transmission Line Impedance Data,
M. A. R. Gunston. New York: Van Nostrand, 1972, ch. 4.

[31 W. G. Lin, “The working characteristic of rectangular and trough
line with inner circular cylindrical conductor,” Scientia Sinica, vol. 9,
pp. 676-686, 1961 (in English).

[4] W. G. Lin and W. Y. Pan, “Determination of the characteristic
impedance of a coaxial system consisting of a rectangular cylinder
concentric with an external circular cylinder,” Acta Electron. Sin.,
vol. 1, pp. 84-90, June 1979, (in Chinese).

[5] P. A. A. Laura and Luisoni, “An application of conformal mapping
to the determination of the characteristic impedance of a class of
coaxial systems,” IEEE Trans. Microwave Theory Tech., vol. MTT-25,
pp- 162-163, Feb. 1977.

[6] N. Seshagiri, “Lear-weighted-square method for analysis and synthe-
sis of transmission line,” IEEE Trans. Microwave Theory Tech., vol.

- MTT-15, pp. 491-503, Sept. 1967.

{71 D. H. Sinnott, “Upper and lower bounds on the characteristic
impedance of TEM mode transmission line with curved boundaries,”
(Corresp.) IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp.
971-972, 1968.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, NO. 11, NOVEMBER 1982

Weigan Lin was born in Canton, China, and
graduated from National Tsing Hua University,
Kumming, China. He received the M.S. and Ph.D.
degrees in June 1947 and June 1950, respectively,
from the University of California, Berkeley.

From September 1947 to June 1948 he was a
Teaching Assistant and from September 1948 to
June 1951 he was a Lecturer in electrical en-
gineering at the University of California, Berke-
ley. Since September 1951 he has been a Profes-
sor in the People’s Republic of China and is now
at the Chengdu Institute of Radio Engineering, Chengdu, Sichuan, Peo-
ple’s Republic of China. In the Winter quarter of 1981, he was a Visiting
Professor, EECS Department, University of California, Berkeley. From
April-June 1981, he was a Visiting Distinguished Scholar, George
Washington University, Washington, DC.

In March 1981 he was elected Member of the Academy of Sciences of
China (Academia Sinica). He is now holding the position of Vice-Presi-
dent of the Chengdu Institute of Radio Engineering. His field of teaching
interest and research is in electromagnetic theory, microwave theory,
microwave networks, optical waveguide theory, and antenna theory.

Dr. Lin is a member of Sigma Xi.

Theory and Application of Coupling Between
Curved Transmission Lines

MOHAMED ABOUZAHRA, STUDENT MEMBER, IEEE, AND LEONARD LEWIN, FELLOW, IEEE

Abstract — An analytical method for deriving the fields, the reflection,
and the directivity of two coupled curved transmission lines is described.
The fields on both lines are found to be accurately in quadrature. The
directivity and reflection are very small. The accuracy of the theoretical
results for a 3 dB dielectric line coupler (designed at 94 GHz) is confirmed
by experiment. Well-balanced outputs and a directivity of better than 40 dB
are obtained. Though a substantial amount of insertion loss in the experi-
mental model is found, this loss is believed to be largely dielectric loss.
Design and performance data are presented.

I. INTRODUCTION

N THE PAST few years coupled-wave theory has be-

come increasingly important due to its role in the milli-
meter-wave devices and integrated circuits. Coupled-wave
theory between parallel transmission lines was originally
introduced by Miller in a widely known paper [1]. Later,
the problem of coupling between two paraliel dielectric
waveguides and its application to directional couplers has
been studied extensively and numerous papers have been
published {2]-[5]. Recently, the theory of coupling between
parallel transmission lines has been extended to describe
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the coupling between nonparallel transmission lines [6]-
[10]. Examples of practical interest are the application of
coupling between two curved transmission lines to the
design of directional couplers, and in some other cases, the
need to avoid crosstalk [11], [12]. Although this case has
received little attention, up to date, except for some recent
work, such analysis is important due to the increasing
interest in millimeter-wave integrated devices.

In a previous paper, [9] the authors have presented the
basic formulation for the coupling between curved trans-
mission lines, and considered the coupling problem of a
finite length parallel coupler joined to matched loads via
nonparallel transmission lines. Closed-form expressions for
the field amplitudes, directivity, and reflection were also
given. In the present paper, the field amplitude differential
equations that were derived in the previous paper for the
curved sections are used. By combining the WKB method
and a perturbation technique, the differential equations are
solved, and closed form expressions for the field ampli-
tudes, the directivity, and the reflection coefficient (due to
back-coupling) are derived. An experimental model for a
3-dB directional coupler designed at 94 GHz is constructed
and tested. The experimental data are in good agreement
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